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INTRODUCTION

The present work on calculation of free shear flows was carried out to investi-

gate the usefulness of several concepts which were previously successfully applied to

wall flows. The method belongs to the class of differential approaches. The turbu-

lence is taken into account by the introduction of one additional partial differential

equation, the transport equation for the turbulent shear stress. The structure of tur-

bulence is modeled after Bradshaw et al. (ref. 1). This model has been used success-

fully in boundary layers and its applicability to other flows is demonstrated in this con-

tribution. An earlier attempt to use this approach for calculation of free flows was

made by Laster (ref. 2). The work reported here differs substantially from that of

I.aster in several ways. The most important difference is that the region around the

center line is treated by invoking the interaction hypothesis (ref. 3) (concerning the

structure of turbulence in the regions separated by the velocity extrema). The com-

pressibility effects on shear layer spreading at low and moderate Mach numbers were

investigated. In the absence of detailed experiments in free flows, the evidence from

boundary layers that at low Mach numbers the structure of turbulence is unaffected by

the compressibility was relied on. The present model was tested over a range of self-

preserving and developing flows including pressure gradients using identical empirical

input. The dependence of the structure of turbulence on the spreading rate of the

shear layer dS/dx was established.

SYMBOLS

al,G,L

Cp

L o

M

defined by equations (2)

specific heat at constant pressure

width to the half velocity point on the profile

Mach number

p mean pressure

*This research was supported in part by NASA Fellowship and partially by
NASA Grant NGR-14-004-028.
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q2 ' '= uiu i

r recovery factor

T temperature

U,V mean velocity components

U1,U 2 external velocities at edges of a mixing layer

_U maximum velocity difference across shear layer

U t _V _ _W v fluctuating velocity components

-7-'7

P

X,Y coordinate axes

x,y distances along axes

(X angle of characteristic

Y

5

d5

ratio of specific heats

\

shear layer thickness defined as distance between points where

d /dx

(dS/dX)still-air jet

dissipation rate

momentum thickness

P mean density

(7

7" --'-- - tVt

spreading parameter for free shear layers
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• + and _- shear stress profiles of "simple" layers

Superscripts:

a exponent

fluctuating quantities

Subscripts:

center- line value

i index

J initial jet value

m,max

1/2

maximum value

half velocity point

ANALYSIS

Equations and the Model of Turbulence

The governing equations considered are the continuity, momentum, and turbulent

kinetic energy equations:

_U + aV = 0

(U 0_ + V _._)U = IdP _u'v'p dx 0y

(U _ ._q"2" _u-';_v, _U _ p_v' q-'_v,/+ V _-}_-= OY- b'Y'\"_- + 1 -e

(i)

The turbulent kinetic energy equation contains three additional correlations not

appearing in the other two equations. To close this system, assumptions about the struc-

ture of turbulence would have to be made, where by structure a given relation between the

local values of two turbulent quantities is understood. As in Bradshaw et al. (ref. 1),

three relations are used to define the structure:
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m

_- = alq2 (2a)

_'}m'{I/2 (2b)

L

"7-7,

pv__p+½q2v'= 1/2 (2c)

The functions al, L, and G are sPecified by algebraic expressions and the local

length and velocity scales of turbulence are assumed to be proportional, respectively, to

5 and {_mt 1/2.

By utilizing relations (2), the conservation equation for q-2 may be converted into

an empirical transport equation for T

_-_+ V 7 = 2a I aUay 7 "rmax + "r _x al _ (3)

The choice of convective type diffusion (eq. (2c)) over gradient type in free flows is

supported by mixing layer experiments. (See refs. 4 and 5.) The positions of zero diffu-

sion and maximum kinetic energy do not coincide, a fact for which gradient diffusion can-

not account for. The two points are separated by a distance of the order of 5 percent of

the shear layer thickness. Also, the free shear flows exhibit strong large-scale motions

which made the convective diffusion important.

There is much experimental evidence to support the relation (2a). An examination

of a wide range of experimental data showed that the value of a 1 varies within a small

range depending on the flow considered. The only difficulty in this formulation occurs in

the vicinity of a velocity extremum, as discussed in the next paragraph. Relation (2b) is

a logical extension, based on equation (2a), of

which is a commonly accepted model.

of

Flows With Velocity Extrema

The formulation presented was applied to free mixing layers with the simple choice

al(Y ) = Constant as in boundary layers. In flows with velocity extrema, the shear
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stress changes sign in the vicinity of the velocity extremum. The turbulent kinetic

energy, by definition, does not change sign and this fact precludes the use of constant

a 1. Also, the shear stress equation is singular at the point where a 1 = 0 (its solution

being regular) and for this reason presents numerical difficulties. (See ref. 2.)

To avoid this problem, the suggestion of Bradshaw (ref. 3) is used and the flow with

velocity extremum is regarded as two adjoining "simple" shear layers which interact only

through the mean velocity profile. Each layer has its own shear profile and the algebraic

sum of these profiles in the region of overlap gives the shear profile of the complete flow.

One reason for looking at the flow from this viewpoint is that if the structure of turbulence

in each layer is unaffected by the presence of the adjoining layer (does not actively partic-

ipate in the interaction), then a simple tool for calculating more complex flows such as

jets, wakes, and wall jets is obtained. There are two such simple or basic shear layer

flows - the boundary layer and the mixing layer - and it is proposed to regard all other

thin shear layer flows as combinations of these two. The empirical functions in each

layer of a complex flow were to be the same, or nearly the same, as in the corresponding

simple shear layer and, as a result, the task of determining them would be simplified.

(The actual difference between jets and mixing layers can be seen in figures 1 and 2.)

Another reason is that this point of view allows a simple explanation of the regions of

"negative production" of turbulent kinetic energy which occur in asymmetric flows. The

technique can be utilized for calculating these flows which otherwise require the a priori

knowledge of the point of vanishing shear when the original formulation is used. The

same shortcoming affects all models which involve the eddy-viscosity concept in one form

or another.

The idea was applied to the duct flows (ref. 3) and very good results were obtained

with the empirical functions which were developed for boundary layers. In this work the

same approach is applied to jets and wakes.

Empirical Functions of the Structure

The empirical functions of the structure of turbulence in mixing layers (with

U2//U 1 = 0) were derived from the experimental data (refs. 4 and 6) and then refined by

comparison of the velocity and shear profiles with the experiments. (See fig. 1.) The

simple choice of constant a 1 = 0.15 and L/5 = 0.09 was found to be adequate for good

results. The shape of the diffusion function G was obtained by integration of the diffu-

sion in the turbulent kinetic energy balance. The proper values of the empirical func-

tions for U2/U 1 ¢ 0 were deduced from calculations by comparison with the results of

Spencer (ref. 7). The empirical functions were found to be dependent on the velocity ratio

of the mixing layer. This dependence may be correlated with dh/dx, the spreading rate

of the shear layer.
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The same model was applied to jets and wakes as outlined. The two adjoining layers

are calculated as two separate layers. They share joint U and V profiles but they

have separate shear profiles. The only difference from the mixing-layer program appears

in the momentum equation where the shear profiles are superposed to give the "true"

shear profile in the region of overlap:

aU 8U 1 dp av + 87-U V (4)
W- W -+ ther layer

Beyond the velocity maximum, the layer experiences a negative production in the shear

equation which limits the region of overlap.

The program is written, at the present time, for symmetric jets and wakes because

of lack of experimental data. However, the concept is not restricted in any way to sym-

metric flows and its importance lies in its ability to treat and explain asymmetric flows.

The calculations show that in free flows the structure of the "simple" layer is

affected by the interaction. The interaction tends to modify more the magnitude than

the shape of the empirical functions. Thus, the a 1 and L/5 were retained constant

and the shape of the diffusion function G was slightly altered. (See fig. 2.) The com-

parison with experiments indicates again the dependence of the structure on the spreading

rate dS/dx. The limiting case for dS/dx = 0 is shown in broken lines in figure 2.

The results show the usefulness of the interaction concept for calculation of free

shear flows. The required modifications of the empirical functions are not large and

indicate that the flows with velocity extrema may be regarded as weakly interacting

adjoining shear layers. There appears to be more interaction of turbulent structure in

the free flows than in the ducts and the explanation may be sought in the behavior of the

shear stress in the vicinity of the velocity extremum. (See fig. 3.) The shear stress

profiles of free flows overlap significantly more and the value of the shear on the center

line is typically 0.55_-max, against 0.1_ma x in the duct, and thus causes a stronger

interaction.

All the results presented are calculated with the same input, the structure being a

function of y/6 and dS/dx alone.

Compressible Flow

The governing equations for the compressible flow are much more complicated than

their incompressible counterpart. If the restriction is made to include only low and mod-

erate Mach number flows, many of the new correlations appearing in the compressible

equations may be neglected on the basis of order-of-magnitude arguments. (See ref. 8.)

This neglect simplifies the equations which may then be written in boundary-layer form

as follows:
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8x
__+_+OaP _ap_y _+ _7 =°

+ _. aT..T 1 d._.ppa-r "r ap
8y -P dx + _" + P a-'y"

where

U_x+ Ol milJ2•i -l mlI/2= "r ay p ay

"]+a 1 _x +a 1 _-.j

i p'v' +2 ½q2v'+_ P'q-4'_Q_'v'=e'l'm Im

The inclusion of compressibility presents two additional tasks. The structure of turbu-

lence in compressible flow and the density variation across the layer have to be deter-

mined.

For the values of the empirical functions in compressible flows, the suggestion

(ref. 9) is relied on that the turbulence is convected passively by the mean flow as long

as the local Mach number of the root-mean-square fluctuations is much

less than unity. The inference is that the structure of turbulence is Mach number inde-

pendent and the "incompressible" values of the empirical functions may be used. This

assumption is based on the analysis of experiments in boundary layers, where this condi-

tion is satisfied up to moderate Mach numbers (M < 5).

In the Math numbei" range to which the present approach is limited, a good approxi-

mation for the density profile can be obtained from the Crocco formula used in boundary

layers:

555



CpT + 0.5rU 2 = Constant

which together with the equation of state yields p = p(U). It eliminates the need for an

additional equation and may be incorporated into the incompressible version of the pro-

gram with only small modifications.

Compressibility effects due to temperature or density differences were also incor-

porated by assuming, respectively, similarity between temperature and velocity profiles

and between mass fractions and velocity profiles. That again yields a relation p = p(U)

which is useful for small compressibility effects. Large effects will require the solution

of a separate equation.

METHOD OF SOLUTION

With the diffusion term in the kinetic energy equation modeled to be of the convec-

tive type, the set of equations becomes hyperbolic. There are two choices of solving this

system, either by a procedure suitable for parabolic equations or to use the method of

characteristics. The first approach is advantageous if it is intended to introduce addi-

tional equations, for example, for compressible flows or for a more involved model of

turbulence. In the present work, it was decided to use the mathematically simpler method

of characteristics used already in the boundary-layer calculations. (See ref. 1.) The

model of turbulence and the empirical functions developed in the course of this work

would be the same if an alternative method of solution of these equations is used.

The accuracy of the calculations is governed by the number of points on the profile

and by the number of iterations used to improve the interpolation along the characteris-

tics. However, even if several iterations are used, the momentum and mass balance are

not preserved because of numerical inaccuracies and lead to a momentum thickdess gain

of the order of 0.1 percent per station. To avoid accumulation of error, the'grid size is

being readjusted by that very small amount after every step so that momentum is pre-

served. The mass balance is then very well preserved - to within 1 percent on a typical

run. The largest inaccuracies occur for flows issuing into a small externalstream. One

of the characteristic angles near the edge tends to ot = arc tan (V/U) and precludes cal-

culation of mixing with still air unless some special numerical treatment for this bound-

ary is introduced. The problem at the still-air edge affects other methods of solution as

well. Calculation of mixing with small external stream has some practical limitations.

The step size in the x-direction is inversely proportional to tan _max and, therefore,

for economical calculation, it is necessary to maintain at least U 1 = 0.05Uma x which

gives tan _max = 1. The region of very small external stream also suffers from larger

than average errors in mass balance.
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COMPARISONWITH EXPERIMENTS

The model developed for the mixing layers can be used for all velocity ratios. Cal-

culations for three ratios are compared with experiments below:

(a) Mixing into still air. (See Liepmann and Laufer (ref. 6) and Bradshaw and

Ferriss (ref. 4) and also figure 4.) Note that the computed profile has a small external

stream rather than still air on its edge; thus, the spreading rate is reduced somewhat.

(b) Mixing with a parallel moving stream. (See Spencer (ref. 7) and figures 5 and 6.)

The jet program is capable of handling both jets and wakes in the presence of pres-

sure gradients by using the same empirical input. Some predictions compared with exper-

iments are

(a) Jet mixing with still air. (See Bradbury (ref. 10) and figure 7.) Both the exper-

iment and the calculations had actually a small external stream which does not affect the

nondimensional profiles.

(b) Small deficit wake. (See Townsend (ref. 11).) The region in which Townsend

made his measurements is far from complete self-preservation as documented by the dif-

ference between the measured shear profile and the profile required for self-preservation.

(See fig. 8.) The calculations compare well in the region investigated by Townsend and

show self-preservation far downstream. (See fig. 9.) The small excess jet tends toward

the same results as the small deficit wake when W - 0.

When the external flow varies as U 1 _ xa, there are ranges of the exponent a for

which the momentum equation allows self-preservation of jets or wakes. The following

two flows fall in that category:

(c) Wakes in a pressure gradient - investigated by Gartshore (ref. 12) who found

them approximately self-preserving. The calculations show that, although the flow has

the tendency to conform to the self-preservation, it drifts steadily away from it (fig. 10).

(d) Self-preserving jet in a pressure gradient. Value of the exponent a = -._a

was used for the calculations. The results obtained are plausible, although there are

no experiments to support them. (See fig. 11.)
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APPENDIX

COMMENTS ON TEST CASES

This appendix presents comments on some of the test cases presented in figures 12

to 19.

Test Case 5 (Hill and Page)

The free shear layer was measured in the early stages of its development from a

boundary layer separated over a cavity. At the separation the boundary layer was turbu-

lent and had a momentum thickness of 0.0793 cm. The last measured station was at

x = 20.95 cm or x/O = 264. The dimensions of the cavity and of the orientations of the

axes X,Y are not clear in reference 13. Depending on the details of the geometry, sig-

nificant backflow and transverse pressure gradient may have been present. In view of

these uncertainties, it is difficult to comment on the disagreement of the calculations and

of the experiment and also on the lack of spreading of the experimental profile on the low

velocity side.

In any case, as the boundary layer was turbulent at the separation the shear layer

was probably not in the self-preserving range even at the last station. (See Bradshaw,

ref. 14.) In the calculations the maximum shear first increased above the "fully

developed" value (overshoot). Its decrease toward the value far downstream was slow

and monotonical. At x = 20.95 cm, its value was still higher by an amount on the order

of 10 percent. Also the spreading rate 1/a was still substantially higher at that station

than far downstream.

Test Case 13 (Bradbury)

The calculations were not overly sensitive to the initial shear.

initial shear by 66 percent produced less than 1-percent difference in

An inc'rease of the

W at x/D = 300.

Test Case 14 (Chevray and Kovasznay)

In a wake very close to the trailing edge, the structure of turbulence may be expected

to be that of a boundary layer rather than that of a free flow. The question remains how

long does it take for the structure to undergo the change from one regime to another. The

examination of the data of reference 15 showed that the mean velocity and turbulent quan-

tities take on their wakelike shapes already by the distance x = 20 cm and possibly even

earlier. It seems reasonable to expect that also the structure of turbulence came close

to the wake type by that distance. This possibility was tested by starting the calculations

at three different points x 0 = 0, 20, and 50 cm by using the experimental profiles as the
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APPENDIX - Concluded

input. The results do confirm the expectation since although the latter two calculations

differ from the first one they agree with each other. (See figs. 12(a) and 12(b).) It

appears that the present model has difficulties near the trailing edge where the struc-

ture is still that of the boundary layer. The calculated and experimental profiles at

x = 240 cm agree well when the calculations start at x = 20 cm (fig. 12(c)) or at

x = 50 cm. From the figures it is also clear that the momentum thickness of the com-

puted and measured profiles are not equal. A check on the momentum thickness at sev-

eral stations revealed the following variation of 8 and gives an idea about the generai

accuracy of the experiment:

x 0 20 50 240

0 0.578 0.606 0.585 0.557

Test Case 16 (Demetriades (ref. 16))

The results of the calculations were found to be rather sensitive to the initial shear

in contrast to the test case 13. A 20-percent change of the initial shear produced a sub-

stantial difference at x/40 = 2000 and this difference (as represented by the value of

Tm/AU2 ) still persisted very far downstream. This behavior was found both in
\

compress-

ible and incompressible flows. This lack of tendency "to forget" of small deficit wakes

is very interesting and suggests that convection and diffusion of turbulence in these flows

have a large influence on the flow development.

The presented results were obtained by using a recovery factor of 0.9.
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DISCUSSION

B. E. Launder: I would like to ask whether your method can be extended to cope with

axisymmetric flows ?

T. Morel: Presumably, one could certainly try to do that, and I would expect it would

work. However, there we have to talk, strictly speaking, about an infinite number of

interactions. That means we would lose the nice mental picture we were basing this on.

B. E. Launder: Doesn't it look then, that yours is a rather complicated way of doing

something very simple ? A more conventional simulation of the shear stress equation

would permit one to treat both axisymmetric and plane shear flows.

T. Morel: The flows that we want to calculate are certainly not very simple and that is

the reason we have all gathered here. We know so much more about the kinetic energy

equation that we thought it worthwhile to pursue our work in this direction. Further, as

I pointed out in the presentation, the interaction approach has a very important conse-

quence. It allows us to use the kinetic energy equation to close the system without having

to rely on the eddy viscosity to obtain the shear stress. This fact alone makes this work

certainly worthwhile.

G. L. Mellor: One comment here - it looks like you are taking a perfectly good energy

equation and turning it into a shear stress equation. And yet there closely exists a per-

fectly good shear stress equation. I think you get into trouble when you do that, as evi-

denced by qualitative argument required to avoid the jump in sign of a, when going from

one sign at a channel to the other.

T. Morel: First, the exact shear stress equation is not necessarily a perfectly good

equation. There are terms which we do not know enough about. The kinetic energy equa-

tion is very well documented; our results certainly seem to support that. Second, the

pressure-rate-of-strain correlation in the exact shear stress equation is usually mod-

eled as a sum of production and dissipation. When all the terms are modeled, that equa-

tion looks the same as our equation: You can ask Brian Launder about that. To your last

question, if you view the flow from the point of view of separate layers, there is no jump

of a 1 within either one of them. And that is precisely the point we are making.

A. Roshko: Yes, I would like to comment on Launder's comment. This question of

whether what works for two-dimensional flow will work with axisymmetric flow is not

so clear. For example, I have a feeling that these shear layers, in particular, have the

large structure that has a lot of two-dimensionality in it. In fact our measurements show

that. In a fully developed axisymmetric flow, I think that is going to have a very different

structure. I think it is an instability structure. I don't think it will be axisymmetric. I
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think it will be skewed, and random. Therefore I am sure that the physics will be the

same for those two flows.

P. T. Harsha: Your figure 11 shows some pretty mystifying wiggles in your parameter

Au/u 1. Can you explain them ?

T. Morel: Well they don't mean much. You start out with some initial conditions which

are away from self-preservation and watch what happens. If it is a flow that likes the

self-preservation, it will tend toward it. We started a bit off, and it had to adjust. It is

just trying to adjust. That's explainable.

P. A. Libby: Tom, I would like to ask a question, not directly to you, but I think it does

raise a question about some of these newer methods, and perhaps some of these other

people will straighten me out. For example, in the method you described, if I look at

the mathematical structure, I see a first-order differential of r with respect to y.

That raises the possibility of satisfying one boundary condition with respect to • on

some line of x. In a free shear problem, of course, you want to say that • is 0 at

two points, plus or minus infinity. I don't see how you do that. I've raised similar

questions with other people; they say you've got to put in molecular viscosity which puts

you back into a second-order equation. But of course, if you look at similar free-mixing

flows, you cannot leave that molecular viscosity in, because it destroys the similarity.

That term wants to vary as _'x and the purely turbulent problem wants to go like x

itself. Now this, in my view, is just a manifestation of one of the problems that enter

when you look at the newer methods of solving turbulent shear problems. I would like

to hear what you and other people have to say about this matter. Would you like to

comment?

T. Morel: No, I really didn't quite follow what you said. I would like to talk to you

afterwards.
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